Short term of diabetes in the rat brain:

effects on neuroactive steroid, cholesterol homeostasis and mitochondrial functionality
Diabetic Disease

Chronic, endocrine and metabolic pathology
Elevated blood glucose levels

1980
108 million people

2014
422 million people

- Type I – insulin deficient
- Type II – insulin resistant
Chronic, endocrine and metabolic pathology

Elevated blood glucose levels

Affection of neuroactive steroid levels:
- Peripheral nerves
- Cerebellum
- Spinal cord
- Cerebral cortex (Pesaresi et al., - Horm Behav. 2010)

CNS complications:
- Risk of dementia
- Cognitive deficit
- Impairment in learning and memory
- Neurophysiological and structural changes

Long term Complications:
- Neuropathy
 - Peripheral Neuropathy
 - Diabetic encephalopathy

1980
108 million people

2014
422 million people

1980 vs 2014 increase of 314 million people

Diabetic Disease

Type I – insulin deficient
Type II – insulin resistant
Molecules that can exert their actions in the nervous system directly or after metabolization

Neuroactive steroids: peripheral hormonal steroids, neurosteroids, synthetic steroids
Highly compartmentalized in a sequence of reactions, which implies as first step the translocation of cholesterol from the cytoplasm to the inner mitochondrial membrane.
Brain Cholesterol

- Very abundant in the CNS (25% of total body cholesterol)
- Can’t pass the blood brain barrier
- De novo synthesis
Brain Cholesterol

- **Very abundant in the CNS (25% of total body cholesterol)**
- **Can’t pass the blood brain barrier**
- **De novo synthesis**

```
Acetyl-CoA + Acetoacetyl-CoA
   ↓
    HMG-CoA
    ↓
 HMG-CoA Reductase
    ↓
    Mevalonate
    ↓
    Lanosterol
    ↓
    Desmosterol
    ↓
    DHCR24
    ↓
    Cholesterol
```

Cell Metabolism

Article

Diabetes and Insulin in Regulation of Brain Cholesterol Metabolism

Ryo Suzuki,1 Kevin Lee,1 Enxuan Jing,1 Sudha B. Biddinger,2 Jeffrey G. McDonald,2 Thomas J. Montine,4 Suzanne Craft,2,5 and C. Ronald Kahn1,6

1 Joslin Diabetes Center
2 Children’s Hospital Boston
3 Harvard Medical School, Boston, MA 02215, USA
4 Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75330, USA
5 Department of Pathology
6 Departments of Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System

Department of Psychiatry and Behavioral Science
University of Washington, Seattle, WA 98108, USA

Correspondence: c.ronald.kahn@joslin.harvard.edu

DOI: 10.1016/j.cmet.2013.11.005
Can Short-term diabetes alter the neuroactive steroids levels in the hippocampus?

GOALS:

1) Analysis of neuroactive steroid levels
2) Assessment of the steroidogenic machinery
3) Evaluation of the precursor of neuroactive steroids, the cholesterol
4) Analysis of the mitochondrial compartment

In a model of type 1 diabetes in rat raised diabetic by a single i.p. of streptozotocin after one month
Levels of neuroactive steroids in plasma and hippocampus of control and STZ rats

<table>
<thead>
<tr>
<th></th>
<th>Plasma</th>
<th>Hippocampus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>STZ</td>
<td>Control</td>
</tr>
<tr>
<td>PREG</td>
<td>0.280 ± 0.063</td>
<td>0.424 ± 0.145</td>
<td>3.240 ± 0.576</td>
</tr>
<tr>
<td>PROG</td>
<td>0.347 ± 0.091</td>
<td>0.277 ± 0.070</td>
<td>0.999 ± 0.224</td>
</tr>
<tr>
<td>DHP</td>
<td>0.154 ± 0.042</td>
<td>0.143 ± 0.057</td>
<td>4.363 ± 0.571</td>
</tr>
<tr>
<td>THP</td>
<td>0.142 ± 0.022</td>
<td><0.100</td>
<td>1.104 ± 0.059</td>
</tr>
<tr>
<td>Isopregnanolone</td>
<td>0.876 ± 0.199</td>
<td><0.100 **</td>
<td>0.211 ± 0.031</td>
</tr>
<tr>
<td>DHEA</td>
<td>0.078 ± 0.021</td>
<td>0.066 ± 0.011</td>
<td>0.236 ± 0.044</td>
</tr>
<tr>
<td>T</td>
<td>4.149 ± 0.543</td>
<td>0.950 ± 0.251 ***</td>
<td>4.464 ± 0.755</td>
</tr>
<tr>
<td>DHT</td>
<td>0.090 ± 0.020</td>
<td><0.050</td>
<td>1.001 ± 0.143</td>
</tr>
<tr>
<td>3α-diol</td>
<td>0.690 ± 0.136</td>
<td>0.156 ± 0.046 **</td>
<td>0.279 ± 0.038</td>
</tr>
<tr>
<td>3β-diol</td>
<td><0.050</td>
<td>0.057 ± 0.005</td>
<td>0.057 ± 0.004</td>
</tr>
</tbody>
</table>

Data are expressed as pg/µl of plasma and pg/mg of tissue and are the mean ± SEM, n = 7 animals for each experimental group. Limit of quantification (LOQ) for THP and Isopregnanolone is 0.1 pg/mg tissue; for DHT and 3β-diol is 0.05 pg/mg tissue. Statistical analysis is performed by Unpaired Student’s t-test. * p < 0.05. ** p < 0.01. *** p < 0.001

Romano et al., 2016 J Steroid Biochem Mol Biol. [Epub ahead of print]
Effect of short-term diabetes in steroid synthesis

Student's t test * P < 0.05; ** P < 0.01

Romano et al., 2016 J Steroid Biochem Mol Biol. [Epub ahead of print]
Effects of short-term diabetes on cholesterol levels

<table>
<thead>
<tr>
<th></th>
<th>Hippocampus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>STZ</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>µg/mg tissue</td>
<td></td>
</tr>
<tr>
<td>Free cholesterol</td>
<td>27.40 ± 1.34</td>
<td>29.23 ± 1.44</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>25.65 ± 1.26</td>
<td>31.30 ± 1.70 *</td>
</tr>
<tr>
<td>Desmosterol</td>
<td>1.28 ± 0.08</td>
<td>1.24 ± 0.07</td>
</tr>
<tr>
<td>Oxysterols</td>
<td>ng/mg tissue</td>
<td></td>
</tr>
<tr>
<td>24(S)-hydroxycholesterol</td>
<td>90.07 ± 1.80</td>
<td>84.25 ± 1.96 *</td>
</tr>
<tr>
<td>25-hydroxycholesterol</td>
<td>0.18 ± 0.01</td>
<td>0.18 ± 0.01</td>
</tr>
<tr>
<td>24,25-epoxycholesterol</td>
<td>0.22 ± 0.03</td>
<td>0.26 ± 0.04</td>
</tr>
<tr>
<td>27-hydroxycholesterol</td>
<td>0.28 ± 0.01</td>
<td>0.32 ± 0.02</td>
</tr>
<tr>
<td>7α-hydroxycholesterol</td>
<td>0.05 ± 0.01</td>
<td>0.06 ± 0.01 *</td>
</tr>
<tr>
<td>7β-hydroxycholesterol</td>
<td>0.15 ± 0.01</td>
<td>0.21 ± 0.01 ***</td>
</tr>
<tr>
<td>7-ketocholesterol</td>
<td>0.24 ± 0.01</td>
<td>0.33 ± 0.02 ***</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SEM, control (n = 8), STZ (n = 9). Statistical analysis is performed by Unpaired Student’s t-test. *p < 0.05. **p < 0.001.

Romano et al., 2016 J Steroid Biochem Mol Biol. [Epub ahead of print]
Effects of short-term diabetes on cholesterol bioavailability

Student's t test * $P < 0.05$; ** $P < 0.01$

Romano et al., 2016 J Steroid Biochem Mol Biol. [Epub ahead of print]
Effects of short-term diabetes on cholesterol bioavailability

Student’s t test * P < 0.05; ** P < 0.01

Romano et al., 2016 J Steroid Biochem Mol Biol. [Epub ahead of print]
Short-term diabetes induces reactive oxygen species and mitochondrial alterations

Student’s t test * P < 0.05; ** P < 0.01

Romano et al., 2016 J Steroid Biochem Mol Biol. [Epub ahead of print]
• Short-term diabetes affects the levels of PREG, PROG, THP, ISOPREG, T, DHT and 3α-diol and are associated with a decreased expression of steroidogenic molecules, such as StAR, P450sc and 5α-R type 1, suggesting that diabetes alters steroidogenesis and steroid metabolism in the hippocampus.

• Impaired hippocampal cholesterol homeostasis and mitochondrial dysfunction may contribute to the modification in steroid levels induced by diabetes.

• Our findings suggest that alterations in cholesterol synthesis and metabolism in the diabetic brain may be a relevant factor for the development of diabetic encephalopathy.
Acknowledgments

Neuroendocrinology Unit:

• Prof. Roberto C. Melcangi
• Dr. Silvia Giatti
• Dr. Marzia Pesaresi
• Dr. Silvia Diviccaro

Laboratory “Giovanni Galli”:

• Prof. Donatella Caruso
• Prof. Nico Mitro
• Dr. Matteo Audano